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A dumbbell’s random walk in continuous time 

P A Alemanyt, R Vogel, I M Sokolovt and A Blumen 
Theoretisdie Polymerphysik, Universitil Freiburg. RheinstraBe 12, 0-791 04 Freiburg i.Br., 
Germany 

Received 5 July 1994, in final form 6 September 1994 

Absbact. We study the continuous-time dynamics of a rigid dumbbell or, equivalently. of 
two random walkers coupled through a holonomic constraint. Random walkers under 
halonomic constraints provide a generic modcl for many physical systems, e.g. for polymers. 
Interestingly, the spatial and temporal aspects of the dumbbell’s motion are highly coupled: 
the ensuing behaviour difers considerably from a simple continuowtime random walk 
(cmw)-picture. For wailing-time distributions with broad probability densities thc 
dumbbell‘s dynamics parallels that of polymers i n  melts, i n  that two diKusive regimes 
appear. connected by a broad crossover region. We determine analytically the diffusion 
constants in the two regimes from a higher-order decoupling approach; the results agree 
well with simulations. 

In the present work we study the motion of a rigid dumbbell, consisting of two beads 
connected by a segment. The dumbbell moves along a straight line by performing flips, 
see figure 1 : The two beads move according to waiting-time distributions (WTD), famil- 
iar from continuous-time random walk (CTRW) models [I-41. Due to the jumps, the 
dumbbell’s centre ormass ( c h i )  makes a step to the left (to the right) when the right 
(the left) bead jumps. The motion of the CM is thus a I D  random walk (RW), whose 
properties will be considered in the following. 

This problem is of interest because the dutnbbell represents the simplest model 
for a system of random walkers which move under mutual geometrical (Ilolonomic) 
constraints. As we proceed to show, under such constraints and broad WTD the spatial 
and the temporal aspects of the CM’S walk are strongly coupled. This may be contrasted 
with the simple nnw-picture  for independent particles, where usually the spatial and 
temporal aspects decouple [SI. 

The existence of holonomic constraints is a generic feature for many systems, poly- 
mers being an important example. Our study is thus motivated by a phenomenological 
approach to polymer diffusion in melts [6] and allows us to analyse aspects of the 
spatio-temporal coupling 17, 81 which arise in the cmw-framework. 

We recall that the motion of polymers in melts is complex: The CM’S motion is 
diffusive at short and long times and shows a marked crossover in between, explained 
mostly by a change from Rouse to reptation dynamics [9-1 I]. Another description of 
this phenomenon starts from the Orwoll-Stockmayer polymer model [ 12, 131 of N 

t Also at Centro At6mico Bariloclie (CNEA) and Institute Balseiro (UNC), 8400 Bariloche. Argentina. 
f Also at P N Lebedev Physical Institute of the Academy of Sciences of Russia. Leninsky Prospekt 53. 
Moscow 117924, Russia. 
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Figure 1. Six consecutiw jumps oftlie dumbbell. whose end position is shown in grey. Note 
that the head (HI and the tail (T) move indcpendenlly of each other. 

beads, connected by N -  I freely jointed rods. The beads perform jumps according to 
specific rules (i.e. 180’-rotations of  two neighbouring rods around the axis defined by 
the neighbouring beads; the end beads re-orient freely). One then lets the times at which 
tlie beads jump follow general WTD [6], the rationalization of the WTD being, for 
example, as suggested by Glaruni [ 141, based on the ‘free volume‘ picture: for any bead 
lo move in tlie melt a vacancy is required. As examples, the waiting times may have 
probability densities (PD) of exponential type 

v( I )= r - ’  exp(-t,’r) ( 1 )  

w( I) = y / (  1 + t)’ + 7. (2) 

or of algebraic type 

An algebraic behaviour (such as equation (2)) is obeyed at long times if the vacancies 
themselves perform random walks, so that their probability to return to the origin is 
of power-law-type [2, 31. 

We returu now to the original Orwoll-Stockmayer model [12, 131 in which the 
jumps occur at fixed time intervals, but the jumping bead is chosen randomly; this 
leads to a simple diffusion of the CM. The same holds for WTD of exponential type, 
equation ( I ) ,  when each bead follows its own ‘internal clock’. On the other hand, 
algebraic PD leads to a different behaviour. In figure 2 we show the mean squared 
displacement of the CM of a chain of  N=5 beads, when these move according to 

log,&) 

Figure 2. The CM’S mean square displaccmcnl ( r ’ ( f ) )  for a chain of 5 beads under llie PD 
(2). see text for details. Note the double logarithmic scales. The upper curvc is for y =  1.3, 
the lower one for y =  1.1, The dnshcd lines have slopc I. 
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equation (2) [ 6 ] :  one observes two different regimes, connected by a crossover region. 
I n  the ~ i inu la t ion~ we chose two values for y (1.3 and 1.1) and let the jumps follow an 
ordinary renewal process (see below). Note the logarithmic scales and the large time 
and dynamical ranges required to display the full behaviour, which is quite reminiscent 
of the polymer-CM motion discussed above. 

Now, the appearance under the PD equation (2) of two diffusional regimes is due 
to the interplay between the memory effects inherent in non-exponential PD and the 
spatial correlations. Under PD with ‘long-time tails’ a bead which just performed a 
jump has a higher probability than the others to perfonn the next jump. Two consecutive 
jumps of the same bead, however, cancel each other, and do not lead to any overall 
motion. The small long-time diffusion coefficients are due to such sequences of  repeated 
jumps. as we proceed to show. In fact, large N are not required for displaying this; 
focusing on a rigid dumbbell, see figure I, is sufficient. The dumbbell consists of two 
beads named H (‘Head’) and T (‘Tail’), connected by a segment of unit length. Each 
bead jumps according to its own WTD, the waiting-times of tlie two beads being 
uncorrelated. 

For tlie WTD two situations can be distinguished: 
(i) The WTD for each bead start at t = O ;  this is termed an urdinaty renewal process 

(ORP) [IS]. 
(ii) The motion begins long before f = O ,  so that each bead follows an cquililvirrnr 

renewal process (ERP) [IS]. For the E R P  the interval between t = O  and the first jump 
(the forward recurrence time) obeys tlie PD 

where we set 

J O  

The subsequent E R P  steps follow the usual (ORP) WTD. Evidently, q( t )=r / / ( f )=  
~ - ‘ e x p ( - t / r )  for h e   equalion ion ( I )  and q ( r ) = ( y -  I ) / ( l + t ) ”  for equation (2). The 
difference between (i) and (ii) consists i n  the waiting-time PD for the first step w l ( t ) ,  
for which yl(f)= y ( t )  for ORP and y l ( t )=u , ( / )  for ERr. 

I n  figures 3 and 4 we present in double-logarithmic scales simulation results for the 
mean squared displacement (r’)  of the dumbbell’s CM at time 1. We also give the average 
number of jumps n peformed by both beads up to 1. (n( r ) ) .  Figure 3 corresponds to 
ORP and figure 4 to ERP. For algebraic PD a crossover behaviour ensues, paralleling 
the results of figure 2.  For exponential PO, equation ( I ) ,  no crossover region is found 
and a simple diffusive behaviour holds from very early stages on. 

Figures 3 and 4 allow us to show the highly correlated situation of the cmw-motion 
of the dumbbell. Under exponential PD the situation is hidden. since one has (r’(t))-t 
and ( n ( t ) )  - I. Furthermore for exponential PD one finds for the mean squared displace- 
ment in terms of  n 

where a2 is the mean squared displacement per step (here a‘= I ) .  I n  the original model 
[12, 131, starting from a random, Gaussian chain, equalion (5) is very well obeyed for 



Figure 3. The dumbbell's CM mean square dis- 
placement ( ? ( I ) )  (lull l ine) and the average num- 
bcr oljumps olthe CM. < r r ( r ) )  (dashed line). Here 
an OKP is simulated. with cquation ( 2 )  as m. y = 
1.3 (apper) and y = I . I  (lower curves), see lext 
lor details. 

Figure 4. Same as figure 3. bul lor an ERP. Note 
that here n l r ) - f  a1 all times. Included is also a 
curve lor exponenlial PD, equation (I), (P for 
Poisson). Thedotted lines represent the analytical 
expression. equation (12). 

a11 11. This one may lead to envisage that. as in a decoupled scheme [4, 7, 81, the following 
relation holds: 

In  (6) !he ,&(I) is the probability that 11 jumps (of both H and T) have occurred up to 
t ;  tlieX,,(/) can be determined from the pooled [ 161 (combined) y(r) through an inverse 
Laplace-transform [17]. The meaning of (6) is that the temporal evolution may be 
directly expressed via the number of jumps. 

Equation ( 6 )  is, however, not generally valid [S, IS]. Inserting (5) into i t  one is led 
to ; 

The proportionality between ( r * ( t ) )  and ( n ( t ) >  is now clearly at variance with the 
findings of figures 3 and 4 for broad PD. While at short times (?(I)) and ( U ( / ) )  fall 
together, at longer times [heir behaviour differs. Hence for broad PD the decoupling of 
the spatial and temporal aspects. inherent in equation (6) (see [IS]),  does not hold for 

To understand !he findings we now focus on ( I T )  and on (r') ,  Now, { i i ( t ) ) =  

( i i I , ( t ) )  + ( i i T ( / ) ) =  2(11~~(1)) .  an expression readily evaluated as follows. We notice first 
that x,,(u). !he Laplace transform of ,y,,(I), obeys [3]: 

( I j ( 0 ) .  

x.(tO= wl(4LW(u)l"- '[I - r(u)l!u (8) 
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so that holds: 

( N n ) )  =2(r1,du)) = 2v1(u)/(u[l - !//(U)]} (9) 

with w l ( u ) =  ~ ( u )  for ORP and v l ( u ) = [ l  - ~ ( u ) ] / ( u ( t ) )  for ERP. Equation (9) gets to 
be particularly simple for ERP, ( ~ I ( u ) ) = ( ~ / ( / ) ) u - ~ ,  i.e. 

= 2 / / < 0  (10) 
as is evident from figure 4. The dependence on the WTD enters then only through (t) = 
r for ( I )  and ( I ) =  l / (y-  I)  for (2). For O R P  equation (IO) is also obeyed for t large; 
whereas for small t one finds from equation (8) (n ( / ) )=2y<.  We note that the result. 
equation ( I O ) ,  is connected to the renewal theorem ([ 151 p 46 ff) and holds for ( I ) <  m. 
The short-time behaviour is due to v,(O)#O; for vl(0)=O the dependence of ( n ( r ) )  
on f is no longer linear. 

We now turn to the mean squared displacement and display in figure 5 (r2(n)).  In 
particular for E R P  with broad PD the curves show clear fluctuations between even and 
odd n, superimposed on a nearly linear increase. The fluctuations arise because the 
displacements due to two subsequent jumps of the same bead cancel. This feature 
suggests to decouple the cmw-process at the two-jump level; as we proceed to show, 
this approximation (which neglects higher-order correlations) works very well. 

We view then two subsequent jumps of the CM as one, renormalized, step. The CM 
moves by 1 2  if the jumps involve both beads (probability q )  and by 0 otherwise 
(probability p =  1-4). The mean squared displacement per renormalized step is now 
4q=4( 1 - p ) ,  To calculate p we assume (to fix the ideas) H to make the first jump of 
the renormalized step. Let us denote by ti the time it takes to perform the next jump 
of H, and by t 2  the corresponding time for T. Note that It follows from ORP WTD, 
while t2 obeys the ERP WTD (the last assumption is certainly correct in the long-time 
regime). N o w p  is the probability that f l  < t 2  and is given by: 

p=JOz  dt2q(c2) io" d t l v ( t l ) .  (11 )  

r = l . S  

N ~ : 1 u 7 = 1 . 1  r= 1.3 

20 

10 

0 "  

7=1.1 

0 50 100 

n 
Figure 5. The CM'S mean square displacement <r'> as a functioti of the number of jumps 
n. l l i c  curve (P. Poisson) follows for an exponential PD, equation (I) whereas the curves 
for ERP and oicr are based on equation (2) in whicli y =  1.3 and y= 1 . 1  were sc1. 
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From eqwtion ( I  I )  one finds for the exponential PD (as expected), whereas for 
the power-law in, equation ( 2 )  p= y / ( 2 y -  I) follows. We now assume that different 
renormalized steps are uncorrelated. The exponential I'D leads again to ( r 2 ( f ) )  = 2 / / r ,  
whereas for algebraic PD, equation (2) one obtains for p as above and r large 

P A ,4/CJifmfy er U /  

4tY - I)' r ,  ( r 2 ( r ) )  = 
2 y -  I 

The corresponding short- and long-time behaviours are also given in figures 3 and 
4. The crossover from the short-time behaviour ( ( r 2 f l ) > = 2 y t  for ORP and ( r ' ( t ) ) =  
2( y -  1)i for ERP) to the long-term form, equation ( I  2) takes place at limes correspond- 
ing to a few first jumps of the dumbbell. 

Summarizing. we liave analysed the CTRW motion of a rigid dumbbell, this being 
tlie simplest model of random walkers connected via holonomic constraints. For broad 
PD tlie motion resembles that of macromolecules in melts, displaying two diffusive 
regimes, with a broad crossover region in between. The reason for this is a coupling 
between the temporal and geometrical aspects of the cmw-process. Here we obtained 
approximate expressions for the diffusion coefficients in the two regimes. Intereslingly, 
the features due to the temporal-spatial coupling are obscured when only exponential 
POI are used, so that employing algebraic PD is very helpful. 
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